Westfield Open Cell Foam Insulation

Westfield The open cell spray foam insulation contains a density of 0.5lb. per cubic foot. The greater the density of the foam the heavier, or stronger it will become. This particular type of polyurethane foam is referred to as “Open Cell” because of the nature of the chemical reaction during the installation process. When the polyurethane foam is being applied the tiny cells of the foam are broken causing air to fill the “open” space inside the material, resulting in a soft or spongy material. The open cell foam carries an R-Value of 5 to 5.5 per inch (R-Value is the measure of thermal resistance, which can be found by identifying the ratio of the temperature difference across a spray foam insulator and the heat flux). 0.5lb. foam products use significantly less material than 2lb. foam products do when completing the same sized job, making them attractive to an individual concerned with conserving the foam material. Due to the fact that open cell foam requires less material, the cost of the project is much cheaper than it would be if you were to apply closed cell foam.

Indiana Spf Insulation

How to Make a Spray Foam Tree

Open Cell Foam Spray One of the most important keys to reducing your heating and cooling costs is having your home well-insulated. So what is the best insulation for your home? Spray Foam Foam insulation has two forms: Open and closed cell. Both are made from a polyurethane material and have different propellant agents added. Some are made from biodegradable materials, such as soybeans, to make the off-gases friendlier to the environment. Foam is probably the best insulation for blocking air infiltration combined with high R-value. Installed by a professional, the price of spray foam varies depending on the thickness of the walls and type of foam. Spray foam insulation is probably the best overall insulation on the market if you can afford the cost. Foam insulation lowers your heating and your cooling loads when installed correctly. Additional benefits are elimination of air infiltration, keeps out dust, mold and allergens, and does not sag or deteriorate. Open cell foam is used more in residential applications. It is less expensive to install and is easier to work with after it's in place. Open cell allows water to penetrate, so it makes an excellent roof deck insulator. If water is allowed to penetrate, you can locate roof leaks before the decking deteriorates. Biggest benefit of open cell is heat transfer in sunny locations. It takes approximately 36 hours of sun to penetrate through 8 inches of foam. This is also true for walls. So when the home is cooled, it will stay cool. The warranty of the roof material is not voided with the installation of spray foam insulation. Closed cell foam has a much more structural component to it and can support some weight without compression. Closed cell does not allow water to penetrate and is an excellent insulator for basement and crawl walls where water could be a problem. Closed cell foam has a higher R-value per inch but is very ridged and tough to work with after installation. It is most often used in commercial applications. However, it has its useful applications in homes. Foam insulation keeps mold out of walls. Mold occurs in walls with batt insulation because of "thermal loop effect". This is where the heat penetrates the exterior wall, coming in contact with the cooler interior surface of the drywall, causing moisture to form. Moisture above 25% can provide an environment for mold to grow. Spray foam blocks this heat transfer and has no air gaps in which moisture can form. One way to combat the higher cost of spray foam is to combine a couple of inches of closed cell foam with fiberglass batt insulation installed over the foam, getting the exceptional air-blocking value of foam, with the high R-value and lower cost of fiberglass insulation. Spray foam insulation costs more than fiberglass batts, but it also has approximately twice the R-value of typical fiberglass batts insulation. By combining the two you will get the best of both. Foam insulation is also particularly good for remodeling projects when there is only easy access to the basement or crawl space and the attic. By blocking the air flow from the top (attic) and bottom (crawl or basement) you stop the draftiness that some older homes have, thus making the home more comfortable. A more comfortable home is what we all are looking to achieve. Spray foam can give you warmth in the winter and cooling in the summer when combined with the appropriate HVAC system. These systems can be smaller in size when your home is better insulated with less air infiltration.

How to Fix Holes in Tree Trunks

Expanding Foam Insulation Costs Do you have a sneaking suspicion that the fiberglass insulation in your home or office is falling apart and not doing its job? Do you find bits of pink fluff everywhere? It might be time to ditch your tired old fiberglass insulation and replace it with something that will last. Spray foam is not only more resilient than other kinds of barriers, but it comes with numerous other benefits as well. If you're concerned about the condition of your home or building due to poor insulation, then spray foam can help solve your problems. Spray foam insulation is liquid polyurethane that dries into a tough foam consistency over a surface. Because it's liquid, it can fill in tiny cracks and holes that fiberglass can't protect. The thick, tightly sealed layer it creates is far more energy efficient than any other kind of material. It controls the indoor climate by keeping in more heat and cool air, depending on the weather. This will save you tons of money on electric bills, and be more comfortable for the occupants. Polyurethane insulation also doesn't come with any health risks. Fiberglass is made up of wiry, pink fibers that can make the skin sore and itchy if exposed to it. These fibers come loose and can be inhaled. Breathing in the fibers can cause lesions inside of the mouth and esophagus. Spray foam doesn't have tiny particles that break off and float into the air. It's also harmless to the touch, but is so durable that it does not crumble off anyways. Another benefit of spray polyurethane is that it can make your house or building more hygienic. The thick barrier prevents insects and other pests from sneaking inside. If you've had pest control problems in the past, spray foam insulation can be your new exterminator. Not even moisture stands a chance against its tough exterior. Spray foam keeps water out, which means it also keeps away dangerous mold, which can cost a fortune to repair. If you've been trying everything to get rid of mold, this material is excellent to use in existing homes. Since it can be a messy procedure, and previous insulation will have to be stripped and removed, it is recommended that only professional perform the service. You may be put off by the initial cost of having your home outfitted with a spray foam insulation kit. However, the money and time you will save in the future more than pays for itself. It will even add more value to the home or building, and you won't have to worry about replacing it. The best part about polyurethane is that it is environmentally friendly. If you're trying to make your house or building greener, then spray foam is the way to go. It is made from recyclable and renewable materials, and you'll be saving energy. Its versatility allows it to be sprayed almost anywhere, so you can even insulate the floors and ceilings. Spray foam insulation is a great move to make when you're improving your home or building.

How to Paint Rope

Spray Foam Insulation Machine Although spray foam insulation as we know it today truly emerged in the 1980s, spray foam actually has its roots several decades further in the past, beginning with the development of polyurethane foam in the 1940s by Otto Bayer. Otto Bayer, an industrial chemist, actually began working with polyurethane in Germany during the late 1930s. This technology was brought to the United States in the early 1940s by David Eynon, the president of Mobay, a war effort conglomerate created from the partnering of two chemical industry giants, Monsanto and the Bayer Corporation. Although Otto Bayer worked for Bayer Corporation, he was not related to the company's founding family. During the 1940s, polyurethane polymers were used primarily in military and aviation applications. The production of war machines for the World War II conflict drove most of the applications of these high-grade plastic polymers for the duration of the war. It was not until the 1950s that polyurethane began to be used in home insulation. It was the invention of the "Blendometer" that allowed for expansion of polyurethane application to the home insulation realm. The Blendometer was the first machine able to mix components for the creation of polyurethane foam and was created by Walter Baughman in 1953. The Blendometer allowed for the strategic mixing of chemicals to create what Baughman called a plastic elastomer or an expanding foam. Liquid when applied, this plastic elastomer expanded into a thick foam and eventually hardened upon drying. Baughman's Blendometer was still a partially manual process, with humans tilting trays of chemicals to mix foam. While the machine did allow for the use of polyurethane in home insulation as well as in other home-related applications, like air conditioner insulation, it was still a technology in its infancy and one that made widespread use of polyurethane as a residential insulation material no less cumbersome. Polyurethane polymers were used in a variety of means throughout the following decades, with incredible advancements being made in the auto industry applications of the material in particular. However, it would be more than two decades before the foam would become widely used in home insulation processes. Building on Baughman's invention, the first dedicated spray technology machine was constructed in 1963 by Fred Gusmer. The 1960s and 1970s saw technological advancements which made spray foam's use in home insulation more easily achievable and affordable. It was also in the 1970s that the idea of the "super insulated" home emerged. Largely driven by the energy crisis of the 1970s, home builders and homeowners alike began to look for ways to improve the energy efficiency of homes. The crisis fueled advancements in technology that laid the foundation for modern spray foam applications. It was the development of advanced spray nozzle technology that allowed spray foam insulation to be used widely in home construction and improvement projects. The spray foam nozzle allows the foam mixture and the chemical responsible for its expansion capabilities to be separated until just prior to application. The spray foam mixture consists of several key components but it is the expansion chemical, isosynate, which is responsible for its easy application and expansive character. The application nozzle allows the foam mixture and the isosynate to be delivered to the nozzle through separate hoses, mixing only seconds before being sprayed. The spray foam arrives at its destination as a liquid but quickly expands into a foam substance and later dries into a hardened plastic upon curing. The 1980s and early 1990s saw a great deal of controversy within the spray foam insulation industry as different marketing schemes from various companies promoted the benefits of closed verses open foam insulation and as some companies tried to market water blown foam application processes. Though there has been much debate within the industry, R-value standards, used as a measure of determining energy efficiency, have cleared up much of the controversy. R-value ratings clearly define closed foam as the most effective means of making a home as energy efficient as possible. Closed cell spray foam has additionally been added to the list of building requirements for making homes in hurricane and earthquake zones more structurally sound. The improved stability of homes insulated with spray foam technology makes the use of spray foam a smart move for any homeowner regardless of geographic location.

 


Indiana